Atomic Mass Of Water



For example, the average mass of one molecule of water is about 18.0153 daltons, and one mole of water is about 18.0153 grams. A protein whose molecule has an average mass of 64 kDa would have a molar mass of 64 kg/mol. ››More information on molar mass and molecular weight. In chemistry, the formula weight is a quantity computed by multiplying the atomic weight (in atomic mass units) of each element in a chemical formula by the number of atoms of that element present in the formula, then adding all.

The elements of the periodic table sorted by atomic mass

click on any element's name for further information on chemical properties, environmental data or health effects.

The atomic mass is useful in chemistry when it is paired with the mole concept: the atomic mass of an element, measured in amu, is the same as the mass in grams of one mole of an element. Thus, since the atomic mass of iron is 55.847 amu, one mole of iron atoms would weigh 55.847 grams. Water (chemical formula: H2O) is a transparent fluid which forms the world's streams, lakes, oceans and rain, and is the major constituent of the fluids of organisms. As a chemical compound, a water molecule contains one oxygen and two hydrogen atoms that are connected by covalent bonds. ››More information on molar mass and molecular weight. In chemistry, the formula weight is a quantity computed by multiplying the atomic weight (in atomic mass units) of each element in a chemical formula by the number of atoms of that element present in the formula, then adding all of these products together.

This list contains the 118 elements of chemistry.

The chemical elements of
the periodic chart sorted by:

Atomic Mass

Name chemical elementSymbolAtomic number
- Name alphabetically1.0079HydrogenH1
- Atomic number4.0026HeliumHe2
- Symbol6.941LithiumLi3
- Atomic Mass9.0122BerylliumBe4
- Electronegativity10.811BoronB5
- Density12.0107CarbonC6
- Melting point14.0067NitrogenN7
- Boiling point15.9994OxygenO8
- Vanderwaals radius18.9984FluorineF9
- Year of discovery20.1797NeonNe10
- Inventor surname22.9897SodiumNa11
- Elements in earthcrust24.305MagnesiumMg12
- Elements in human body26.9815AluminumAl13
- Covalenz radius28.0855SiliconSi14
- Ionization energy30.9738PhosphorusP15

For chemistry students and teachers: The tabular chart on the right is arranged by Atomic mass (weight).

The lightest chemical element is Hydrogen and the heaviest is Hassium.

The unity for atomic mass is gram per mol.

Please note that the elements do not show their natural relation towards each other as in the Periodic system. There you can find the metals, semi-conductor(s), non-metal(s), inert noble gas(ses), Halogens, Lanthanoides, Actinoids (rare earth elements) and transition metals.

32.065SulfurS16
35.453ChlorineCl17
39.0983PotassiumK19
39.948ArgonAr18
40.078CalciumCa20
44.9559ScandiumSc21
47.867TitaniumTi22
50.9415VanadiumV23
51.9961ChromiumCr24
54.938ManganeseMn25
55.845IronFe26
58.6934NickelNi28
58.9332CobaltCo27
63.546CopperCu29
65.39ZincZn30
69.723GalliumGa31
72.64GermaniumGe32
74.9216ArsenicAs33
78.96SeleniumSe34
79.904BromineBr35
83.8KryptonKr36
85.4678RubidiumRb37
87.62StrontiumSr38
88.9059YttriumY39
91.224ZirconiumZr40
92.9064NiobiumNb41
95.94MolybdenumMo42
98TechnetiumTc43
101.07RutheniumRu44
102.9055RhodiumRh45
106.42PalladiumPd46
107.8682SilverAg47
112.411CadmiumCd48
114.818IndiumIn49
118.71TinSn50
121.76AntimonySb51
126.9045IodineI53
127.6TelluriumTe52
131.293XenonXe54
132.9055CesiumCs55
137.327BariumBa56
138.9055LanthanumLa57
140.116CeriumCe58
140.9077PraseodymiumPr59
144.24NeodymiumNd60
145PromethiumPm61
150.36SamariumSm62
151.964EuropiumEu63
157.25GadoliniumGd64
158.9253TerbiumTb65
162.5DysprosiumDy66
164.9303HolmiumHo67
167.259ErbiumEr68
168.9342ThuliumTm69
173.04YtterbiumYb70
174.967LutetiumLu71
178.49HafniumHf72
180.9479TantalumTa73
183.84TungstenW74
186.207RheniumRe75
190.23OsmiumOs76
192.217IridiumIr77
195.078PlatinumPt78
196.9665GoldAu79
200.59MercuryHg80
204.3833ThalliumTl81
207.2LeadPb82
208.9804BismuthBi83
209PoloniumPo84
210AstatineAt85
222RadonRn86
223FranciumFr87
226RadiumRa88
227ActiniumAc89
231.0359ProtactiniumPa91
232.0381ThoriumTh90
237NeptuniumNp93
238.0289UraniumU92
243AmericiumAm95
244PlutoniumPu94
247CuriumCm96
247BerkeliumBk97
251CaliforniumCf98
252EinsteiniumEs99
257FermiumFm100
258MendeleviumMd101
259NobeliumNo102
261RutherfordiumRf104
262LawrenciumLr103
262DubniumDb105
264BohriumBh107
266SeaborgiumSg106
268MeitneriumMt109
272RoentgeniumRg111
277HassiumHs108
DarmstadtiumDs110
CoperniciumCn112
NihoniumNh113
FleroviumFl114
MoscoviumMc115
LivermoriumLv116
TennessineTs117
OganessonOg118

Click here: for a schematic overview of the periodic table of elements in chart form

Do you need to know the weight of some molecules? Try our Molecular Weight Calculator!

Lenntech (European Head Office)
What

Distributieweg 3
2645 EG Delfgauw
The Netherlands
Phone: +31 152 610 900
fax: +31 152 616 289
e-mail: info@lenntech.com


Lenntech USA LLC (Americas)

5975 Sunset Drive
South Miami, FL 33143
USA
Phone: +1 877 453 8095
e-mail: info@lenntech.com


What Is The Atomic Mass Of Water

Lenntech DMCC (Middle East)

Level 5 - OFFICE #8-One JLT Tower
Jumeirah Lake Towers
Dubai - U.A.E.
Phone: +971 4 429 5853
e-mail: info@lenntech.com


Copyright © 1998-2021 Lenntech B.V. All rights reserved

Atomic and Molecular Weights

The subscripts in chemical formulas, and the coefficients in chemical equations represent exact quantities. (ce{H_2O}), for example, indicates that a water molecule comprises exactly two atoms of hydrogen and one atom of oxygen. The following equation:

[ ce{C3H8(g) + 5O2(g) rightarrow 3CO2(g) + 4H2O(l)} label{Eq1}]

Molecular Weight Of Water

not only tells us that propane reacts with oxygen to produce carbon dioxide and water, but that 1 molecule of propane reacts with 5 molecules of oxygen to produce 3 molecules of carbon dioxide and 4 molecules of water. Since counting individual atoms or molecules is a little difficult, quantitative aspects of chemistry rely on knowing the masses of the compounds involved.

Atoms of different elements have different masses. Early work on the separation of water into its constituent elements (hydrogen and oxygen) indicated that 100 grams of water contained 11.1 grams of hydrogen and 88.9 grams of oxygen:

[text{100 grams Water} rightarrow text{11.1 grams Hydrogen} + text{88.9 grams Oxygen} label{Eq2}]

Zero mass stock

Later, scientists discovered that water was composed of two atoms of hydrogen for each atom of oxygen. Therefore, in the above analysis, in the 11.1 grams of hydrogen there were twice as many atoms as in the 88.9 grams of oxygen. Therefore, an oxygen atom must weigh about 16 times as much as a hydrogen atom:

[ dfrac{dfrac{88.9;g;Oxygen}{1; atom}}{dfrac{111;g;Hydrogen}{2;atoms}} = 16 label{Eq3}]

Hydrogen, the lightest element, was assigned a relative mass of '1', and the other elements were assigned 'atomic masses' relative to this value for hydrogen. Thus, oxygen was assigned an atomic mass of 16. We now know that a hydrogen atom has a mass of 1.6735 x 10-24 grams, and that the oxygen atom has a mass of 2.6561 X 10-23 grams. As we saw earlier, it is convenient to use a reference unit when dealing with such small numbers: the atomic mass unit. The atomic mass unit (amu) was not standardized against hydrogen, but rather, against the 12C isotope of carbon (amu = 12).

Thus, the mass of the hydrogen atom (1H) is 1.0080 amu, and the mass of an oxygen atom (16O) is 15.995 amu. Once the masses of atoms were determined, the amu could be assigned an actual value:

Atomic Mass Of Water Molecule

1 amu = 1.66054 x 10-24grams conversely: 1 gram = 6.02214 x 1023amu